Tint Pro Window Tinting and Car Audio

Lincoln Park's premier destination for upgrading your car, truck, boat or UTV

4089 Dix Hwy, Lincoln Park, MI 48146 313-382-8468
  • Services
    • Car Audio
    • Remote Starters
    • Truck Accessories
    • Collision Avoidance and Driver Safety Solutions
    • Paint Protection
    • Motorcycle Audio
    • Window Tint
    • Marine Audio
    • Powersports Audio Upgrades
    • Car Wraps and Vinyl Vehicle Graphics
    • Cosmetic and Fashion Paint Protection Films
    • Vehicle Lighting
  • Interactive Garage
  • Visual Tinter
  • About Us
  • Location
  • Contact Us
  • Facebook
  • Instagram

What Is A Soundstage And Where Can I Buy One?

SoundstageWhen it comes to listening to music, there seem to be two kinds of listeners in the context of “where the sound comes from.” Some people want to be enveloped by the music. They want to feel like they are in the very middle of the performance, with sound all around them. This style is sort of like listening to a set of headphones. The other listener wants their music to come from in front of them. This “forward-facing soundstage” style is more like listening to a home audio system or a movie theater.

There is no right or wrong – everyone has their preference. But high-end mobile audio systems are, for the most part, designed for the latter – people who want to feel as if they are sitting in the middle of the audience at an amazing concert.

There is also that guy in the Monte Carlo with the 6x9s in open-backed boxes in the rear window. He, thankfully, is gone now. If you happen to see him, cut off his mullet and drag him to a car stereo shop, please, and thanks!

Imagining a Soundstage

This article talks about an imaginary soundstage. But what in the world is a soundstage?

Soundstage
An overhead view of the described stage.

Imagine a band set up on a stage 20 feet in front of you. Let’s say there is a lead singer in the center of the stage, right at the forward edge. Behind him or her, someone is at a grand piano. To the right of the piano is a big drum kit with several cymbals all around the performer. In front of the drummer, to the right of the lead singer, is someone sitting on a stool with an upright bass. To the left of the singer is someone with a trombone. To the left of them is someone with a trumpet. Behind the trumpet player, to the left of the pianist, is a xylophone player. The xylophone player is also going to sing some backing vocals. So is the drummer.

Imagine those different positions for a second. They not only range laterally across the soundstage, but there is depth to their locations.

This unique and perhaps rare grouping of performers represents all the source aspects of your soundstage, but their locations don’t represent the limits of that stage. Let’s consider the venue in our analogy as well. A medium-size club of some sort. Wooden walls, a hard floor and a high ceiling. The room where we listen to our performance is a huge contributing factor to the sound of the performers. (If you ever have the chance to visit the Ryman Auditorium in Nashville, TN, do it! Even if you aren’t into country music, this venue is amazing.)

So, here we have our performers and our venue. We are going sit about 20 feet back from the center of the stage and let the show unfold for us. Our experience as the performers play defines the soundstage. We hear each instrument in its position on the soundstage. We also hear the sound of those instruments reflecting off the side walls of the club.

To reproduce the performance accurately, we need to reproduce those reflections as well. Capturing those reflections requires a specific recording style – so it may, or may not, happen. A recording of a live performance is much more likely to have that information than a studio recording.

Our Auditorium on the Road

SoundstageThere it is. The space in front of us, where the music is coming from, is our soundstage. If you get a chance to listen to your favorite recordings on a high-end home audio system, and you choose to sit equidistant from the speakers, then you probably have experienced a fairly accurate soundstage. The perceived location of where our music is coming from regarding height, width and depth is our soundstage.

Sadly, most mobile audio systems can’t or don’t recreate this very well. It’s a shame, because experiencing each performer in their correct location, including depth (one performer behind another) brings an amazing level of realism to your music. The good news: Recreating a soundstage in your car isn’t all that hard.

If you let the salesperson and installer at your local mobile electronics retailer know that you want a soundstage in your vehicle, they can design your system that way. Let’s assume we are building a whole new system from scratch, just to make this easier.

The first step will be to select a set of good-quality speakers for the front of your car. You mostly likely will want a component set unless you can fit a large (5-1/4” or larger) coaxial on the dash. Since most vehicles have the front speakers down low in the door, using a component set will let the shop you use install the tweeters up high and far forward. If the tweeters play low enough, say 2.5 kHz, then a skilled tuner can make the sound appear to come from the dash level, rather than the floor.

Soundstage
Tuning software such as this from Audison allows detailed control of the audio.

The next step to creating a soundstage is to have a way to tune those speakers. We aren’t talking about amplifier gain settings. We need control over equalization, output level and signal delay. Because the driver of the vehicle sits closer to the left speakers, those will appear to be louder, and we will hear the sound being reproduced by them sooner than the sound from the other side of the car. The simplest of systems with great soundstages will have either a source unit or external DSP unit with three-way crossovers, stereo equalizers and the ability to delay the signal going to each speaker.

With the above tools in place, your installer can set up the system so the sound coming from each speaker in the front of the car – from both midrange drivers and both tweeters – arrives at the listening position at the same time. Your installer will also tune the system so the left side of the car sounds the same as the right side. This tuning helps to eliminate frequency steering. Frequency steering causes the source location of a sound to move around the soundstage depending on frequency.

Next-level Performance

The above example offers a great two-way front stage. We would, of course, assume you are going to use a subwoofer in the system. A set of door speakers, even great ones, won’t be able to reproduce the bottom octave of the audio spectrum with any authority. With the sub in the system, it’s now called a three-way system. What if you want the system to sound even more realistic in terms of the placement of voices on the soundstage?

One way to improve your soundstage is to install a set of midrange drivers up high and far forward in the car. The A-pillars, dash speaker locations, and high and forward in the door are common midrange locations. If you can get a midrange that will play down to at least 300 Hz, the ability to solidify the dash as the source of the sound becomes much better. Rather than having deeper voices coming from lower in the door, now they will be focus better across the dash.

Another advantage of a three-way speaker set is that the woofer is often capable of producing slightly deeper midbass than an equivalent two-way speaker set.

Soundstage
4-way systems, such as the one in this purpose-built Civic can sound incredible.

The four-way system is going to cost more. You need two more speakers, two more amplifier channels, somewhere to mount those new speakers and probably another 30 to 60 minutes worth of system tuning. But yes, it’s totally worth it.

In these systems, the focus of performance is tailored to the driver’s seat alone. The passenger isn’t going to enjoy the same experience. That said, if you and your co-pilot both want to enjoy equally amazing audio, there are solutions in the works. By the spring or summer of 2017, everyone in the car will be able to enjoy an amazingly realistic soundstage across the dash.

This article provides an overview of the system design requirements for creating a system with a good soundstage. There are a lot of variables and hundreds, if not thousands, of options regarding how to execute to fine-tune the concept.

This is where your experienced mobile electronics retailer comes in. Use their knowledge, skill and experience to help bring your desire for musical realism to reality. If you’re out cruising around, drop into your local mobile electronics specialist retailer and ask if they have a demo vehicle that produces a great soundstage. If you have never experienced one, you will be blown away! Best Car Audio will not be held responsible for the ensuing audio addiction.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

How Car Audio Has Changed Through The Years

Car AudioIf you have been around the mobile electronics industry for more than a decade, then you may have noticed some significant changes. New technologies make our time behind the wheel safer, more entertaining and more productive. Many products offer better performance and efficiency compared to their originals. Innovations and technological advancements let us do things that simply were not feasible decades ago. This article looks at some of the most significant changes that have taken place in the car audio industry over the past few decades.

The Mighty Head Unit

Car Audio
By CZmarlin (Own work) [CC BY-SA 3.0], via Wikimedia Commons
Let’s see how far you want to go back. Mono FM radio? The 8-track? Perhaps a turntable under the dash of your 1960 Chrysler? Things have come a long way in source units and their features. We saw cassette players, the mini-disc (if only for a year) and even CD players come and go. We introduced digital media with MP3 files, then added WMA, WAV and – most recently – FLAC file playback. Soon, Master Quality Authenticated (MQA) will join the ranks.

The introduction and popularity of the Apple iPod signaled a massive change in the philosophy of music lovers. While this handy device could be considered the “nail in the coffin” for the record store industry, it launched new levels of convenience for music accessibility. The mobile electronics industry embraced the iPod, and now, support for it is standard on all mid- to high-level source units. Similar support for Android-based smartphones has also become almost a standard feature in the last few years.

Miniaturization and the advancement of computer processing have given us full-color touchscreen interfaces with fancy animated graphics. We can watch a DVD or digital media movie while having lunch in the car. Portable navigation systems have replaced paper maps to help us travel safely and more efficiently.

Car AudioRecently, we have introduced connected technology solutions. Internet connectivity is a feature in many new car radios, most often via your personal smartphone. Access to the Internet allows you to stream music from online resources like Google Play or iTunes Radio. Apple and Android have developed interfaces for their smartphones to enable drivers to send and receive text messages, make phone calls, select navigation destinations, and choose the music they want to listen to by just talking to the radio. CarPlay and Android Auto are the current “big thing” in multimedia source units.

Those Oh-so-fun Subwoofers!

Car Audio
The JL Audio TW5 is an example of advancements in subwoofer design.

What could you change when it comes to the design of a speaker? Materials for cones, suspensions, surrounds and motors haven’t advanced all that much, and because a subwoofer reproduces only low frequencies, things like cone materials don’t have a dramatic effect on performance. What has changed is our ability to model the behavior of the magnetic field within the speaker. Being able to optimize the geometry of the magnetic field allows designers to create subwoofers that are more efficient and that offer better performance with less distortion at high excursion levels.

The size and location of the subwoofer enclosures we use in our vehicles have become and more important. Back in the “good old days,” if you wanted big bass, you had to give up your trunk. Now, many subwoofers are designed to play nice and low in a very small and shallow enclosure. Using these subwoofers allows your installer to create compact solutions that will fit in a spare-tire well, the corner of your trunk or even in the footwell of some vehicles. We should be clear; there is a trade-off with these subs – they often require more power to produce the same output as a “conventional” subwoofer, but power is inexpensive these days.

Amplifiers, Smaller, More Power

Car Audio
200 watts that fits in the palm of your hand was unheard of in the past.

Power is cheap. You can buy a great-quality 1,000 watt subwoofer amplifier for around $500. Decades ago, a 1,000 watt amp was among the biggest amps available, and it cost several thousand dollars. That amp was also the size of a skateboard and consumed a lot of power. Modern amplifiers are much smaller and much more efficient, sound better and consume less power. A lot of people credit the increase in efficiency to Class D designs. While switching to Class D for many applications makes sense, there have been efficiency improvements thanks to being able to use small microcontrollers and high-tolerance components in a Class AB amp.

In the past few years, more and more companies have been offering amplifiers with built-in advanced signal processing. On the most basic of amplifiers, we have crossovers and bass boost circuits. More advanced amplifiers offer both high- and low-pass filters on the same channel for midbass and midrange applications. Some amplifiers even provide low-frequency signal restoration processing. A whole other class of amplifiers on the market has built-in DSP processing. Some are so advanced that they don’t have a single analog adjustment on them.

Signal Processing Moves To Digital

Years ago, signal processing meant you had an EQ and a crossover in your car. These in-dash processors were made popular by the 1/2-DIN equalizer – a 1×7-inch EQ that would mount in the dash above or below your radio. These little EQs offered as many as 11 bands of graphic equalization to let you “tune” your system. Some had subwoofer level controls and crossovers built in.

Car AudioThe next step in processing was the stand-alone processor – usually either an equalizer or a crossover, sometimes both. These were the size of a medium-sized hardcover book and gave installers much more precise control over system tuning. The drawback was their physical size. They took up a lot of room.

Almost all of these are gone now, replaced by stand-alone DSP processors. These seemingly magic black boxes replace those old stand-alone equalizers and crossovers, and include options like signal delay and the ability to switch between different settings at the flick of a switch.

Modern signal processing has allowed installers to use signal delays to optimize seemingly unconventional mounting locations for speakers to produce an amazingly accurate soundstage.

Speaker Placement Becomes Less Critical

In the past, if you wanted a great soundstage in your car, then you had to work with placement to equalize the difference in path lengths between the front speakers. Autosound competitors would go to great lengths to move seats as far back into the vehicle as possible, and some even built vehicles with a single seat located in the center. It was all somewhat silly because that effort never translated into value or performance for the consumer. All consumers could get were kick-panel–mounted speakers or a compression horn under the dash to aid in equalizing distances.

Car Audio
The factory speaker locations in this Audi can be utilized for great sound.

With the assistance of modern signal processing, installers can use factory locations, then delay the signal going to the closest speakers to put you in the center of them.

Another speaker location that has become popular is the A-pillar speaker pod. A nice midrange and tweeter up high and far forward in the vehicle can help create a deep and wide soundstage. The drawback with this approach is that it only works for one seat. If it is set up for the driver’s seat, the soundstage for the passenger seat is compressed into the right-side speaker location.

Very soon, the newest of processors will offer provisions to make every seat in the car sound great using an up-mixer and a center channel, just like the one in your home theater. Now, both front seats and even passengers in the rear can experience an even and focused soundstage across the dash of the vehicle.

Modern Speakers Refined

Like subwoofers, speakers haven’t changed dramatically since the first fixed-magnet, moving-coil speaker was created in 1925. Speakers have improved in efficiency and accuracy thanks to better materials for surrounds, better adhesives and dramatically better processes that help speaker manufacturers build more-consistent products. The real performance upgrades have come in the optimization of a speaker’s motor assembly with respect to the interaction between the voice coil and the magnetic field.

As a speaker cone moves in and out, the magnetic field strength varies. This causes distortion. The same goes for the suspension system: Being able to model the behavior of different surrounds and spiders allows designers to produce transducers that are more linear and, thus, create less distortion.

The Incredible Car Audio Evolution

Overall, the latest innovations and technologies have moved the mobile electronics industry to a point where the modern in-vehicle infotainment system performs at a level that could not be conceived of even a decade ago. If you want to find out about the latest technologies or products, drop into your local mobile electronics specialist. They would be happy to show you the latest and greatest offerings for your vehicle.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Subwoofer Enclosure Locations – Finding Space For Bass

Enclosure LocationsWhen it comes to bang-for-the-buck upgrades to any audio system, none can beat the dramatic difference of adding a subwoofer. Factory audio systems are getting pretty good at producing a soundstage in front of the listener, and they are EQed well enough not to be painful to enjoy – but one thing they all have in common is anemic, wimpy, thin and muddy bass response. Adding a quality subwoofer system can fix that.

What are optimal subwoofer system enclosure locations? If you think of the stereotypical car audio system, the subwoofer enclosure was usually something that took up most of the trunk or hatch area of the vehicle. You’d pop the trunk, and there would be just enough room for a knapsack or maybe a duffle bag. Did these systems sound great? Absolutely! Did they leave room for golf clubs, luggage or a keg of beer? Not a chance!

Subwoofers for Compact Enclosures

Enclosure LocationsLooking through recent photos of custom car audio installations will reveal that subwoofer enclosures no longer take up space they once did. Why is this? Companies that design and manufacture subwoofers are conscious of the need to provide amazing performance without taking up a lot of space. There are now dozens of subwoofers designed specifically to fit into very shallow locations – like behind or under the seat of a pickup truck. These same subwoofers are also designed to produce deep bass from minimal enclosure volume requirements.

When a company designs a speaker, they have to balance three basic performance criteria – low-frequency extension, efficiency and enclosure volume requirements. In general terms, you get to pick two, and the third will suffer. For a small enclosure driver, it’s often efficiency that takes a small hit. Regaining some of this reduction in output is credited to careful and thoughtful computer modeling and the use of stronger magnets and tighter tolerances withing the motor assembly of the subwoofer. Efficiency isn’t as important as it used to be – we have many high-power amplifiers that don’t cost an arm and a leg.

Conventional Enclosure Locations

Enclosure Locations
Custom enclosure and amplifier rack in SUV hatch.

If you drive a hatchback or SUV, a subwoofer sitting behind the rear seat is still very common. This location works quite well because the output of the subwoofer system is in the same listening environment as it would be in a sedan. Your installer may choose to face the subwoofer in almost any direction – rearward, forward, up or down. Firing the subwoofers down into the floor can act as a bit of a filter for high-frequency energy, so your midbass speakers have to be up to the challenge.

If you drive a sedan, your subwoofer system is probably at the back of the trunk against the rear seats – much like in hatchbacks or SUVs. Again, the direction in which the speaker points varies based on the system design and cosmetic layout. Firing the subwoofers forward provides room to mount amplifiers and processors on the rear of the enclosure.

Another popular application for sedans is to fire the subwoofers through the rear deck or ski pass-through between the seats. These techniques dramatically improve the midbass response from the subwoofer and ease the requirement for large midbass drivers in the front of the vehicle.

A Little Custom, A Little Fun

Working with unique locations can offer a dramatic increase in the available storage area in the vehicle. There are two classic locations for a custom subwoofer enclosure: in the spare tire well or the corner of the trunk or storage area.

Enclosure Locations
A creative installer can fit a surprising amount of equipment in a spare tire well, while leaving the trunk fully functional.

The spare tire well of many vehicles can offer an amazing amount of space for subwoofers. In many cases, a skilled installer can include your amplifiers and processors in that same space. Some thoughtful design and careful planning can leave you with your entire trunk available for cargo. You do need a plan for not having your spare tire with you – but the local auto service is always a phone call away.

Enclosure Locations
This SUV side enclosure takes up almost no usable space.

Building an enclosure in the corner of your trunk can offer excellent performance without a dramatic effect on available cargo space. Installers love to get creative with these enclosure designs. Classically, these enclosures have been molded to the vehicle with layers of fiberglass. Layered fiberglass construction offers excellent use of space, sometimes allowing for a larger subwoofer to be used with the same low-frequency performance, or even for a vented enclosure design. The drawback to fiberglass can be the time it takes for construction, and the smell. Fiberglass resin has a strong odor. It won’t last long, but that aspect is worth keeping in mind.

Another construction technique that is becoming more and more popular is stack-fab. The stack-fab process uses multiple layers of wood. Each is cut to fit the contour of the vehicle, then glued one on top of another until your installer has built up to the top of the desired space. Stack-fab construction can be quite efficient in terms of time. The enclosure is ready to go right away. There is no waiting for layers of fiberglass and resin to dry. Stack-fab isn’t as efficient on internal air space, but produces a very rigid and well-damped result.

Unique Applications and Solutions

Enclosure Locations
In many instances only an inch or two of legroom has to be given up to utilize a footwell enclosure.

What if your vehicle is a little more challenging than most? Say you have a small two-seater like a Miata or an NSX, but want great sound? There is no room behind the seat for anything. What’s an auto sound enthusiast to do? The passenger side footwell can be a great location for a subwoofer. A skilled installer can get a good-quality 8- or 10-inch subwoofer in there while leaving more than enough room for the passenger to sit comfortably in the vehicle.

Wherever you and your installer decide to place your subwoofer enclosure, the addition of good, solid low-frequency musical information will dramatically improve the overall performance of your mobile audio system. Search the Internet and join one of the many car audio groups on Facebook to gather ideas. Once you have a few thoughts, talk with the product specialist and installer at your local mobile electronics specialist retailer. No doubt, the result will be amazing!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Passive Vs Active Crossover Networks

Crossover NetworksTo optimize the performance capabilities of a speaker, it should operate within the frequency range for which it was designed. A woofer or subwoofer won’t be able to reproduce high frequencies accurately. A tweeter will self-destruct if you ask it to try to play bass frequencies. For this reason, we use three- and four-way speaker systems in most vehicles. That means using crossover networks.

The purpose of a crossover is to split up the frequencies that pass through it. We are going to delve waist-deep into the benefits and drawbacks of the crossovers commonly used in carCar Audio audio system component speaker sets.

How a Passive Crossover Network Works

Crossover Networks
This inductor is one of the pieces used in a passive network

A passive crossover network is a component or group of components that is installed on the speaker wires between an amplifier and a speaker. The behavior of these components attenuates portions of the signal going to the speaker itself. Four components are commonly used in passive networks: capacitors, inductors, resistors and protection devices.

The combination and configuration of these components are used to create a low-pass, high-pass or band-pass filter network. Resistors are used to attenuate the output of devices, or sometimes used as part of a frequency-dependent impedance correction circuit called a Zobel network. Some manufacturers include light bulbs, diodes or some form of positive temperature resistors to limit how much voltage a tweeter receives. Completely passive active networks have been available (but that was a long time ago).

How an Active Crossover Functions

Crossover NetworksAn active crossover is a device that modifies an audio signal before the amplifier. It works on line-level or preamp signals only. Active crossovers combine op-amps, resistors and capacitors to alter different frequency ranges of the signal. Unlike passive networks, active crossovers can be designed to increase the level of the signal, but only in the case of powered filters. Active networks are often include other functions, such as remote level controls and bass boost circuits.

Benefits of Passive Crossovers

Crossover Networks
The switches on this passive crossover allow for attenuation.

It is worth noting that each passive network is designed to work at a specific frequency for a specific speaker. If you change the speaker, the filter will not respond in the same way. In some cases, if the impedance of the speaker is significantly different from the one the network was designed for, the speaker may be damaged, or portions of the network may become damaged.

Passive networks are easy to use. You run a wire from your amplifier to the input of the network, then connect each speaker to the output. Other than mounting the network in a dry location that is free from vibration, that’s about all you have to consider.

Some passive networks include some form of output level attenuation. Most use a two- or three-position switch. Some use jumpers. An extremely high-end network may include a variable L-pad or potentiometer for extreme fine-tuning capabilities.

Passive crossovers allow you to split the power of a single amplifier channel to drive two different speakers. Fewer amplifier channels can dramatically reduce the system cost, since you only need a pair of amplifier channels to run a full set of speakers.

Limitations of Passive Crossovers

Since a passive crossover network is designed for a specific frequency, once the parts are chosen and assembled, there is no way to change that frequency without introducing new or additional parts.

Designing a passive crossover can be somewhat complex. The simplest of networks rely on some basic assumptions about the impedance of each speaker at the crossover frequency. Designing a network that compensates for the complex reactive load that speakers create as they move is difficult. It requires computerized modeling software and a way to measure the impedance and frequency response of the speaker at varying drive levels.

High-quality passive crossovers are designed for a specific distance and angle between the woofer and the tweeter. If the network is designed for the speakers to be far apart, moving the speakers close together will cause the signals to sum incorrectly. Even changing the angle of a speaker can have a dramatic effect on the frequency response at the crossover point.

Passive crossover networks have limitations in how much power they can handle. The magnetic fields created in an inductor have a limit. The voltage applied to a capacitor also has a limit. Crossover networks can and do overheat and fail if too much power is sent to them.

Passive crossover networks consume energy. Using a speaker system with a passive network is not quite as efficient as one using an active filter network. The overall efficiency of the crossover network depends on its complexity and the quality of the components used in the network.

Passive crossover networks are somewhat susceptible to noise. If you run a wire with an AC signal on it past the inductor in a passive network, the network can easily pick up that signal and add it to the audio signal. Choosing a safe location to mount passive crossover networks is important.

Benefits of Active Crossovers

Crossover NetworksMost active crossover networks are adjustable. That means by turning a knob or moving a switch, you can change the crossover frequency. This flexibility makes active crossovers suitable for use with almost any speaker system. Most active crossovers also include level controls, so you can easily fine-tune the level of the midrange and tweeter to compensate for different mounting locations.

Active crossovers don’t care how powerful your amplifiers are because they process the signal before it enters the amplifier. Active crossovers are also not very sensitive to temperature variations, so they can be very accurate, all the time. If one of the amplifiers channels in an active crossover system clips, the distortion only affects that single channel.

Challenges of Active Crossovers

Because active crossovers are universal in design, being able to set crossover frequencies accurately can be challenging. Labels on potentiometers are notoriously inaccurate. Most active crossovers have fixed attenuation slopes. You can’t change these slopes to compensate for response characteristics or placement variations. Unless the speaker manufacturer provides it, or you have extensive experience in measuring the electro-mechanical and acoustic response of the set of speakers, knowing what frequency to cross speakers over at can be difficult. Too low and you risk damage to the tweeter. Too high and you get distortion from the midrange. Many speaker combinations also require the over- or under-lap of the crossover frequencies to produce a flat response.

An active crossover requires a dedicated amplifier channel for each speaker. These extra channel requirements can increase the cost of designing a system.

The Perfect Solution

Crossover NetworksIf there is no limit to your budget, the ideal crossover solution for a set of speakers is an active crossover with a Digital Sound Processor performing the filtering. A DSP will offer adjustable crossover frequencies, and most offer adjustable crossover slopes and alignments.

No matter what you choose, it’s a good idea to spend some time with a high-resolution RTA to make sure your system is set up for the smoothest, flattest response possible at the crossover frequency.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

Are Single or Dual Voice Coil Subwoofers Better?

Voice CoilWhen it comes to buying subwoofers, a lot of people have questions or make assumptions about the benefits and drawbacks of single voice coil and dual voice coil versions. Understanding the differences between them requires a slightly enhanced understanding of how an amplifier works. We cover both topics in this article.

How an Amplifier Works

An amplifier is a simple device that takes an audio signal (from your radio, for example) and increases the voltage. That’s it.

You may (logically) be asking yourself, “Why do we call it a power amplifier?” We get an increase in power because the speakers we connect to the outputs of the amplifier have a low impedance. In car audio, we typically see loads between 1 and 4 ohms. This low impedance, combined with the increased voltage of the audio signal in the amplifier, causes relatively large amounts of current to flow through the voice coil of the speaker. This current flow causes a magnetic field and, subsequently, the voice coil moves toward or away from the magnetic field created by the stationary magnet on the speaker.

(OK, maybe this didn’t stay as simple as originally planned.)

Amplifier Load Determines Amplifier Power

Voice Coil
Ohm’s Law Pie Chart
Let’s use an example of an amplifier that has a peak output voltage of 20 V. We don’t need to worry about the fact that this is an alternating current signal – we will examine this at a single point in time. With 20 V applied to our voice coil, let’s say we have a 4 ohm impedance on this coil. Ohm’s law states that a potential of 20 volts applied across a resistance of 4 ohms will result in 5 amp of current to flow. Using the equation P (Power) = Voltage x Current, we get 20 x 5, or 100 watts of power. If we change the impedance of the load to 2 ohms, we double the current to 10 amps, for a resulting power level of 200 watts.

If you look at the specifications for an amplifier, especially a subwoofer amplifier, you will see power ratings at different load impedances. In most cases, unless the voltage of the power supply in the amplifier is adjustable, amplifiers will make more power as the load impedance decreases.

What About These Subs?

Deciding which subwoofers to buy depends on the amp you are using and the number of subwoofers you are going to use. You want to choose a combination of subwoofers that will let you wire the voice coils together to an impedance that will allow the amp to make the power you want. Let’s look at several examples.

Example 1

Voice Coil
Images courtesy of JL Audio

We have the option of two different fictional subwoofers, each rated for 750 watts of continuous power handling. One subwoofer has a single 4 ohm voice coil. The other subwoofer has dual 4 ohm voice coils.

The dual voice coil subwoofer can have its coils wired in series to produce an 8 ohm load, or in parallel to produce a 2 ohm load. To complete this fictional example, we have an amplifier that will produce 400 watts into a 4 ohm load and 700 watts into a 2 ohm load. We have a small car and want to use a single 12 inch subwoofer in a large vented enclosure to get maximum low-frequency output. What sub should we use?

If we use the single voice coil subwoofer, the amplifier will not make full power in the 4 ohm load. We should use the dual voice coil subwoofer and wire the voice coils in parallel to present the amp with a 2 ohm load.

Example 2

Voice Coil
Images courtesy of JL Audio

In this example, we have the same electronic equipment, but the vehicle is a large SUV. There is a lot of room for subwoofers, and the owner wants to list to reggae, loudly. The owner has listened to a friend’s system and found out that a pair of subs matches his listening preferences perfectly. Which subs should we use?

If we use the dual voice coil subs, we have three options for wiring the four (two on each sub) voice coils together. We could wire all the coils in parallel. Parallel wiring will present the amp with a 1 ohm load. Most likely, the amp will go into protection because the load is too low. We could wire all the coils in series to present the amp with a 16 ohm load – but that’s not going to happen. We could wire the voice coils on each subwoofer in series, then parallel the pair of subwoofers to get a 4 ohm load. A 4 ohm load is not ideal.

If we use a pair of single voice coil subwoofers, however, and wire the subs in parallel, we get a 2 ohm load. Happy amp and happy customer!

Choosing and Wiring Subwoofers

  • Voice CoilYou can use as many subwoofers as you want on a single amplifier.
  • You must use all the voice coils on each sub. If you need a 4 ohm load but have a dual 4 ohm sub, using only one coil is going to cause issues. Bad issues.
  • Wire all the subwoofers you choose so the current going through each subwoofer is the same. In most cases, this means using pairs of subs. In the past, several companies offered dual 6 ohm voice coil subs that could be wired in groups of three to present amplifiers with standard load impedances of 1 or 4 ohms.

Do not wire one dual voice coil subs in series and one in parallel before connecting the subs together in parallel. You will get more current through the (parallel) low-impedance subwoofer. This imbalance will upset the performance of the enclosure and wreak havoc with the reliability and quality of your system. This is unrelated to the wiring of multiple subwoofers, but: Don’t mix and match different subwoofers. Each has its enclosure requirements and response characteristics. There is no way to guarantee that the output of two different subwoofers will sum positively at all frequencies.

So, Which Voice Coil Configuration Is Better?

The answer to the question “which is better” is neither. SVC and DVC subwoofers are simply two different options when buying. They are analogous to a tire manufacturer offering different-sized tires for different vehicles – there is an application for each.

Adding a subwoofer system should be one of the very first things you do to upgrade a factory audio system. When you are ready to make the leap into the realism, impact and dynamics that a great subwoofer can add, drop by your local car audio specialist retailer. They would be happy to work with you to design a system that meets your performance expectations.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

  • 1
  • 2
  • 3
  • …
  • 5
  • Next Page »

Recent Articles

Soundstage

What Is A Soundstage And Where Can I Buy One?

March 19, 2023 

When it comes to listening to music, there seem to be two kinds of listeners in the context of “where the sound comes from.” Some people want to be enveloped by the music. They … [Read More...]

Car Audio

How Car Audio Has Changed Through The Years

March 6, 2023 

If you have been around the mobile electronics industry for more than a decade, then you may have noticed some significant changes. New technologies make our time behind the wheel … [Read More...]

Starter Remote

Car Starter Remote Control Options

February 19, 2023 

It’s fall, and for the mobile electronics industry, the focus shifts directly to the sales and installation of remote car starters. The size of the remote start industry is … [Read More...]

Enclosure Location

Subwoofer Enclosure Locations – Finding Space For Bass

February 12, 2023 

When it comes to bang-for-the-buck upgrades to any audio system, none can beat the dramatic difference of adding a subwoofer. Factory audio systems are getting pretty good at … [Read More...]

Crossover Networks

Passive Vs Active Crossover Networks

January 29, 2023 

To optimize the performance capabilities of a speaker, it should operate within the frequency range for which it was designed. A woofer or subwoofer won’t be able to reproduce high … [Read More...]

Contact Us

Testimonials

Highly recommend!

I had a great experience! The entire staff was extremely friendly and knowledgeable. I would highly recommend this business for any future car window tinting, stereo or exterior protection.

I jumped on board!

My mom got her windows tinted with tint pro and after seeing hers, I jumped on board. The staff is extremely transparent with how their business works, especially on a busy Saturday - when they advise you to line up, line up! I appreciate how on top of things they are and you can tell they care about their customers by how they treat them. 10/10 recommend, thanks Tint Pro!

Great quality and price

Tint Pro was able to get my wife's car in at the last minute. We were in and out in less than a half hour. Great quality and great price. Will be bringing all of my future vehicles here.

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location


Get Directions to Tint Pro Window Tinting and Car Audio

Address

Tint Pro Window Tinting and Car Audio
4089 Dix Hwy
Lincoln Park, MI 48146
Phone: 313-382-8468

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Remote Starters
  • Truck Accessories
  • Collision Avoidance and Driver Safety Solutions
  • Paint Protection
  • Motorcycle Audio
  • Window Tint
  • Marine Audio
  • Powersports Audio Upgrades
  • Car Wraps and Vinyl Vehicle Graphics
  • Cosmetic and Fashion Paint Protection Films
  • Vehicle Lighting

Store Hours

SundayClosed
Monday9:00 AM - 6:00 PM
Tuesday9:00 AM - 6:00 PM
Wednesday9:00 AM - 6:00 PM
Thursday9:00 AM - 7:00 PM
Friday9:00 AM - 7:00 PM
Saturday9:00 AM - 3:00 PM

Copyright © 2023 Tint Pro Window Tinting and Car Audio · Privacy Policy · Website by 1sixty8 media · Log in

 

Loading Comments...