Tint Pro Window Tinting and Car Audio

Lincoln Park's premier destination for upgrading your car, truck, boat or UTV

4089 Dix Hwy, Lincoln Park, MI 48146 313-382-8468
  • Home
  • Services
    • Car Audio
    • Remote Starters
    • Truck Accessories
    • Driver Safety
    • Paint Protection
    • Motorcycle Audio
    • Window Tint
    • Marine Audio
    • Powersports Audio
    • Vinyl Wrapping
    • Fashion PPF
    • Vehicle Lighting
  • About Us
  • Location
  • Contact Us
  • Facebook
  • Instagram
You are here: Home / Car Audio / Everything You’ve Wanted to Know About Audio Distortion – Part 1

Everything You’ve Wanted to Know About Audio Distortion – Part 1

DistortionWhen we talk about any signal, be it audio, video or data, there is an accompanied reality for alterations and errors made to that signal as it passes through different electronic components, conductors or magnetic fields. While we get concerned when we hear that a component introduces distortion or when we read distortion specifications, distortion is part of nature and is simply unavoidable. Until any distortion reaches a significant level in an analog signal, it can’t be heard or seen.

Starting With A Foundation in Audio Distortion

With that in mind, let’s create a foundation for observing and understanding the properties of an audio signal in the electrical and frequency domains. This information will serve as the foundation for understanding distortion in part two of this article.

Any signal, be it Direct Current (DC) or Alternating Current (AC), can be analyzed in two ways – in its time domain or frequency domain. Understanding the difference between these two observation domains will dramatically simplify the life of anyone involved in the mobile electronics industry.

When we observe a signal in the time domain, we are looking at the amplitude of the signal relative to time. Normally, we would use a voltmeter or oscilloscope to look at signals in the time domain. When we consider a signal in the frequency domain, we are comparing the amplitude (or strength) of individual frequencies, or groups of frequencies within the signal. We use an RTA (real time analyzer) on a computer or handheld/benchtop devices to look at the frequency domain.

Direct Current

When analyzing the amplitude of an electrical signal, we compare the signal to a reference; in 99% of applications, the reference is known as ground. For a DC signal, the voltage level remains constant with respect to the ground reference and to time. Even if there are fluctuations, it is still a DC signal.

If you were to chart the frequency content of a DC signal, you would see it is all at 0 hertz (Hz). The amplitude does not change relative to time.

Let’s consider the DC battery voltage of your car or truck. It is a relatively constant value. Regarding amplitude versus time, it sits around a 12.7-12.9 volts on a fully charged battery with the vehicle off. When the vehicle is running and the alternator is charging, this voltage increases to around 13.5 to 14.3 volts. This increase is caused because the alternator is feeding current back into the battery to charge it. If the voltage produced by the alternator was not higher than the resting voltage of the battery, current would not flow and the battery would not be recharged.

Alternating Current

AC Signal – Time

DistortionIf we look at an AC signal, such as a 1 kHz tone that we would use to set the sensitivity controls on an amplifier, we see something very different. In the case of a pure test tone like this, the waveform has a sinusoidal shape, called a sine wave. If we look at a sine wave on an oscilloscope, we see a smoothly rolling waveform that extends just as much above our reference voltage as it does below.

AC Signal – Frequency

DistortionIt is now wise to look at this same signal from the perspective of the frequency domain. The frequency domain graph will, if there is no distortion, show a single frequency. In consideration of an audio signal, the amplitude (or height) of that frequency measurement depends on how loud that single frequency is relative to the limits of our recording technology or measurement device.

Audio

When we listen to someone speak or play a musical instrument, we hear many different frequencies at the same time. The human brain is capable of decoding the different frequencies and amplitudes. Based on our experiences, and the differences in frequency and time response between one ear and the other, we can determine what we are hearing, and the location of the sound relative to ourselves.

Analyzing the time domain content of an audio signal is relatively easy. We would use an oscilloscope to observe an audio waveform. The scope will show us the signal voltage versus time. This is a powerful tool in terms of understanding signal transmission between audio components.

A Piano Note

Middle C – Time

DistortionLet’s look at the amplitude and frequency content of a sound most of us know well. The following graph is the first 0.25 seconds of a recording of a piano’s middle C (C4) note in the time domain. This represents the initial hit of the hammer onto the string. If you look at the smaller graph above the larger one, you will see the note extends out much further than this initial .25 second segment.

Middle C – Frequency

DistortionWe know that the fundamental frequency of this note is 261.6 Hz, but if you look at the frequency domain graphs, we can see that several additional and important frequencies are present. These frequencies are called harmonics. They are multiples of the fundamental frequency, and the amplitude of these harmonics is what makes a small upright piano sound different from a grand piano, and from a harp or a guitar. All of these instruments have the same fundamental middle C frequency of 261.6 Hz; their harmonic content makes them sound different. In the case of this piano note recording, we can see there is a large spike at 523 Hz, then increasingly smaller spikes at 790 Hz, 1055 Hz, 1320 Hz and so on.

Sine vs Square Waveforms

Every audio waveform is made up of a complex combination of fundamental and harmonic frequencies. The most basic, as we mentioned, is a pure sine wave. A sine wave has only a single frequency. At the other end of the spectrum is a square wave. A square wave is made up of a fundamental frequency, then an infinite combination of odd-ordered harmonics at exponentially decreasing levels. Keep this in mind, since it will become important later as we begin to discuss distortion.

Noise Signals

Noise is a term that describes a collection of random sounds or sine waves. However, we can group a large collection of these sine waves together and use them as a tool for testing audio systems. When we want to measure the frequency response of a component like a signal processor or an amplifier, we can feed a white noise signal through the device and observe the changes it makes to the amplitudes of different frequency ranges.

White Noise – Time

DistortionYou may be asking, what exactly is white noise? It is a group of sine waves at different frequencies, arranged so the energy in each octave band is equal to the bands on either side. We can view white noise from a time domain as shown here.

White Noise – Frequency

DistortionWe can also view it from the frequency domain, as displayed in this image.

Variations In Response

The slight undulations in the frequency graph are present because it takes a long time for all different frequencies to be played and produce a ruler-flat graph. On a 1/3-octave scope, the graph would be essentially flat.

Foundation For Time And Frequency Domains

There we have our basic foundation for understanding the observation of signals in the time domain and the frequency domain. We have also had our first glimpse into how harmonic content affects what we hear. Understanding these concepts is important for anyone who works with audio equipment, and even more important to the people who install and tune that equipment. Your local mobile electronics specialist should be very comfortable with these concepts, and can use them to maximize the performance of your mobile entertainment system.

If you’ve made it this far and want to learn even more about audio distortion,  click here for Part 2 of this article!

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

 

Share this:

  • Click to email a link to a friend (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pinterest (Opens in new window)

Related

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

About BestCarAudio.com

BestCarAudio.com is a showcase for the very best mobile electronics retailers in the world and a place to educate and inform interested consumers about existing and emerging technologies.

Recent Articles

Distortion

Everything You’ve Wanted To Know About Audio Distortion – Part 2

July 31, 2022 

If you were able to grasp the concepts outlined in the first article about audio distortion, then this one will be a piece of cake. If not, head back and have another read. It can … [Read More...]

Distortion

Everything You’ve Wanted to Know About Audio Distortion – Part 1

July 17, 2022 

When we talk about any signal, be it audio, video or data, there is an accompanied reality for alterations and errors made to that signal as it passes through different electronic … [Read More...]

Subwoofer Enclosures

Subwoofer Enclosures, More Than Just a Box

September 19, 2016 

For decades, there has been discussion after discussion about which of the different subwoofer enclosures are “the best” and why. Let’s take a look at why we need a subwoofer … [Read More...]

Power Wire

Power Wire: OFC versus CCA

September 19, 2016 

When it comes to high-current wiring in a vehicle, there are two types of stranded power wire available: solid copper and copper-clad aluminum. This article looks at the … [Read More...]

Gain Control

Your Amplifier’s Gain Control Is Not A Volume Control

September 19, 2016 

For decades, car audio enthusiasts have been fiddling around with the gain control on their amplifiers in hopes of “getting more out of them.” Many professional installers have … [Read More...]

Subscribe!

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Join 1 other subscriber

Testimonials

Great quality and price

Tint Pro was able to get my wife's car in at the last minute. We were in and out in less than a half hour. Great quality and great price. Will be bringing all of my future vehicles here.

Chris Grieves

I jumped on board!

My mom got her windows tinted with tint pro and after seeing hers, I jumped on board. The staff is extremely transparent with how their business works, especially on a busy Saturday - when they advise you to line up, line up! I appreciate how on top of things they are and you can tell they care about their customers by how they treat them. 10/10 recommend, thanks Tint Pro!

Hailey Cremeans

Highly recommend!

I had a great experience! The entire staff was extremely friendly and knowledgeable. I would highly recommend this business for any future car window tinting, stereo or exterior protection.

Gary Bastien

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Location


Get Directions to Tint Pro Window Tinting and Car Audio

Address

Tint Pro Window Tinting and Car Audio
4089 Dix Hwy
Lincoln Park, MI 48146
Phone: 313-382-8468

Connect With Us

  • Facebook
  • Instagram

Services

  • Car Audio
  • Remote Starters
  • Truck Accessories
  • Driver Safety
  • Paint Protection
  • Motorcycle Audio
  • Window Tint
  • Marine Audio
  • Powersports Audio
  • Vinyl Wrapping
  • Fashion PPF
  • Vehicle Lighting

Store Hours

SundayClosed
Monday9:00 AM - 6:00 PM
Tuesday9:00 AM - 6:00 PM
Wednesday9:00 AM - 6:00 PM
Thursday9:00 AM - 7:00 PM
Friday9:00 AM - 7:00 PM
Saturday9:00 AM - 3:00 PM

Copyright © 2022 Tint Pro Window Tinting and Car Audio · Privacy Policy · Website by 1sixty8 media · Log in

 

Loading Comments...